
0478 Syllabus Paper 2 Review Notes
created by Hardy Wen

Overview

前段时间做完了Paper1的Review Notes发现效果还不错，来过⼀下Paper2。23年的Paper2与前⼏年⼤改
版，差了很多。新Syllabus⼆卷的形式跟⼀卷差不了太多，也是⼀问⼀答，具体考察如下：

因为Paper2的新颖性，所以刷往年的PP⽆法直观的感受到真正Paper2的形式。这时候Specimen Papers就显
得尤为重要了：

SpecimenA: Specimen (2023) QP - Paper 2 CAIE Computer Science GCSE
(physicsandmathstutor.com)

SpecimenB: Cambridge IGCSE 0478 Computer Science specimen paper 2B for examination from
2023 (cambridgeinternational.org)

⽽Paper2会考察到许多编程⽅⾯的内容，例如在最后的会有⼀道15分的场景问题

⽽编程⽅⾯最重要的是你的代码逻辑，对于语法⽅⾯的考察会较弱⼀点，所以如果考场上特别的语法记
不清了可以不⽤太担⼼（这⼀点在第⼀章配图中有提到）。

CIE要求的伪代码的语法规范、不同的Logic gate, Flowchart的图案可以在Syllabus中找到595424-2023-
2025-syllabus.pdf (cambridgeinternational.org)

由于Paper2考察实践的内容较多，本份⽂件中不会涉及到具体的语法（如Python要怎么写，Logic gates要怎
么画，具体的算法要怎么⽤Python来实现，Flow Chart要怎么画）。⽂件中会提到你需要掌握的技能，⽽具
体的语法可以到⽹上学习（如Python3 教程 | 菜⻦教程 (runoob.com)，看Syllabus，或者看我之前写的资料
（朋友圈有发合集）。

本份⽂件会着重讲到⼀些理论性的Programming concepts（也就是Paper2要背的部分），祝⼤家⼀起加
油！

https://pmt.physicsandmathstutor.com/download/Computer-Science/GCSE/Past-Papers/CAIE/Paper-2/Specimen%20(2023)%20QP%20-%20Paper%202%20CAIE%20Computer%20Science%20GCSE.pdf
https://www.cambridgeinternational.org/Images/675876-2023-specimen-paper-2b.pdf
https://www.cambridgeinternational.org/Images/595424-2023-2025-syllabus.pdf
https://www.runoob.com/python3/python3-tutorial.html

7. Algorithm Design and Problem-Solving

Development Lifecycle

What is meant by the program development life cycle?

a series of structured steps that are followed to produce a system

It includes (you need to identify each stage and the tasks associated with each stage)

1. Analysis

abstraction: looking at a problem in general, intuitively, instead of looking at specific
terms

decomposition of the problem: the breakdown of problems into subproblems to be
tacked one by one

identification of the problem and requirements: identifying what is the problem and
what is required

2. Design

decomposition: the breakdown of systems into subsystems to be developed one by
one

structure diagrams, flowcharts, and pseudocodes: to develop general ideas about how
to code the system

need to know how to draw the diagrams and write in pseudocode

3. Coding

write program code: developing the system

iterative testing: testing throughout the development of the program, often modules by
modules

4. Testing

testing program code with the use of test data: testing the whole program to see
whether it should receive data within the allowed range and reject data out of the range

Decomposition

How are computer systems made up?

every computer system is made up of sub-systems, which are made up of further sub-systems

How can a system be decomposed?

a system can be decomposed into inputs, processes, outputs, storage

to visualize the decomposition, use structure diagrams

a tree-like diagram that contains input, process, and output

1. you identify what are the inputs and outputs of the system

2. identify what calculations are needed to draw the diagram

3. Draw the diagram

Algorithms

How to evaluate the purpose of a given algorithm?

1. stating what the algorithm is inputting and outputting

2. describing the processes involved

What are the common algorithms?（具体algorithm的示例在书本7.7⼩节，截图放在这⾥有点占位置不好排
版:(）

Linear search：遍历每⼀个列表⾥的元素 看那个元素是不是要找的值（做对⽐）

Bubble sort：反复遍历列表让如果下⼀位⽐当前位的数⼤/⼩ 就交换位置 要⽤两层循环

Totalling：初始化⼀个变量total = 0，遍历列表⾥的每⼀个元素并把把值加到total

Counting：初始化⼀个变量count = 0，遍历列表⾥的每⼀个元素，如果元素符合判断条件则count =
count + 1

Finding Maximum：初始化⼀个极⼩值maxnum = -9999999，遍历列表⾥的每⼀个元素，如果元素⼤
于maxnum则maxnum等于那个元素，这样不停迭代更新

Finding Minimum：初始化⼀个极⼤值minnum = 9999999，遍历列表⾥的每⼀个元素，如果元素⼩于
minnum则minnum等于那个元素，这样不停迭代更新

Validation and Verification

Why do we need validation checks?

to test if the data entered is possible / reasonable / sensible and whithin set bounds, done by
the program

程序判断说⽤户输⼊的数据是不是合法的，满不满⾜程序的要求

Types of validation checks

Types Descriptions

Range Check Makes sure that the value of the data is between a specific boundary

Length Check Makes sure that the number of characters is within a set digit

Type Check Makes sure that the data is from a correct data type

Presence
Check

Makes sure that the data has been entered

Format Check Makes sure that the data meets a specific order/format

Check Digit
Makes sure that the data entered is correct by comparing the check digit
value

Why do we need verification checks?

to test if the data input is the same as the data that was intended to be input, done by the user

⽤户⾃⼰判断说⾃⼰输⼊的数据是不是正确的，譬如说⾃⼰输⼊的⽤户名是不是对的

Types of verification checks

1. visual check: comparing the data entered with the original side by side 就是⽤眼睛做对⽐

!

2. double entry check: when the same data is entered twice, and the computer will check
whether there are any differences in these two times（譬如设置密码的时候就会要求输⼊两次
密码）

Test data

What are the different types of test data?

Normal data: data that the program should accept

Abnormal data: data that the program should not accept

Extreme data: the largest/smallest acceptable value

Boundary data: the largest/smallest acceptable value and the corresponding smallest/largest
rejected value

therefore, extreme data is included in boundary data

8. Programming

Programming concepts

What are some basic data types?

integer, real (float in Python), char, string, Boolean

What are some basic programming concepts?

it is important to understand the concepts below, but not important to memorize their definitions

Variable: a quantity that can be altered throughout the execution of the program

used to store single items of data that can be accessed through the identifier (variable
name)

Constant: a quantity that cannot be altered throughout the execution of the program

used to store single items of data that can be accessed through the identifier (constant
name)

Sequence: programs carry out instructions in a sequence; instructions are executed in order, one
after another

order of steps in a task

Selection: choosing a path through a program

if and case statements

Iteration: repetition of a sequence of steps in a program

count-controlled loops: FOR...

pre-condition loops: WHILE...

post-condition loops: REPEAT... UNTIL...

Totalling: the process of keeping a running total of values in a program

Counting: the process of finding the number of values in a container, such as an array

String handling: the manipulation of string in a program

length: LENGTH(text) in pseudocode, len(text) in Python

substring: SUBSTRING(text, start, number of characters) in pseudocode,
text[start:end] in Python

the first character of the string can be zero or one

upper: UCASE(text) in pseudocode, text.upper() in Python

lower: LCASE(text) in pseudocode, text.lower() in Python

What are some operators?

Arithmetic: for arithmetic calculations

+ , - , * , / , ^ (** in Python for powering), MOD() (% in Python), DIV() (// in Python)

Logical: for logical operations

= , < , <= , > , >= , <> (!= in Python)

Boolean: for boolean operations

AND , OR , NOT (use lower-case letters in Python)

What are nested statements?

a construct (selection or iteration) that is inside another construct

for example, to iterate through the 2D array,

for row in range(num_rows):

 for column in range(num_columns):
 array[row][column] = 0

1

2

3

What do we need to know about subroutines?

Procedure: a subroutine that does not return a value to the program that called it

Function: a subroutine that does return a value to the program that called it

Parameter: a value that is sent to a subroutine

Local variables: the variable that can only be accessed in the subroutine it is declared within

Global variables: the variable that can be accessed from any part of the program

Library routines: pre-written subroutines that can be called within a program

MOD, DIV, ROUND, RANDOM

RANDOM() in pseudocode returns a random number between 0 and 1 inclusive

so, to return a whole number between -1 and 1,

To get a random value in Python,

Maintainable Program

How to make a program maintainable?

Use meaningful identifiers

for variables, constants, arrays, procedures and functions

1. easier for others to understand

2. easier for you to maintain the program later

3. when you've written a long program you don't need to remember the messy names and
the corresponding value that they store, you can just remember the natural language
which describes the data as the identifier is meaningful

Use comments (// in pseudocode, # in Python)

1. helps others to understand the code, as comments provide explanatory information about
the source code

2. helps you to understand the code later

3. comments can also be used to note some bugs or ideas that you can look back and fix

Use functions or procedures

1. avoid repetition of commands, so the code will become easier to read

2. save programming time

randomNumber <- ROUND(RANDOM() * 2, 0) - 11

import random # import the library
randomNumber = random.randint(1,100) # call the library routine, a
random number between 1 and 100 inclusive

1

2

Arrays

What are the uses of arrays?

to store a large collection of values

to reduce the need of declaring multiple variables with various identifier, and therefore reduce
codes

What are the features of arrays?

can only store items of a single datatype

stores items in contiguous memory locations

if it is a static array, the size of the array is initialized at the start and cannot be resized
throughout running the program

File handling

Why do we need to store data in a file?

data is not lost when the computer is switched off // data is stored permanently

data can be used by more than one program or reused when a program is run again

data can be backed up or archived

data can be transported from one place / system to another

Databases

What are the datatypes of SQL?

text/alphanumeric, character, Boolean, integer, real, data/time

Why do we need a primary key?

a unique identifier for a specific record in the data table

Boolean Logic

What are the logic gates?

NOT, AND, OR, NAND, NOR, XOR

	0478 Syllabus Paper 2 Review Notes
	Overview
	7. Algorithm Design and Problem-Solving
	Development Lifecycle
	Decomposition
	Algorithms
	Validation and Verification
	Test data

	8. Programming
	Programming concepts
	Maintainable Program
	Arrays
	File handling

	Databases
	Boolean Logic

