
5. System Software

5.1 Operating Systems

OS Management Tasks

Utility Software

What is an OS

Controls operation of computer system

Provides a user interface

Controls how computer responds to user's requests

Controls how hardware communicate

Provides interface between user and hardware

Why a computer system requires an OS

1. The hardware is unusable without an OS

hides the complexity of hardware from the user

2. Acts as an interface

controls communications between user and hardware

3. Provides software platform/environment on which programs can be run

Memory Management

memory protection to ensure two programs do not try to use the same memory space

use of virtual memory

deciding which processes need to be in main memory at any one time

location of processes within the memory

Example: when a process terminates, memory is made available by the OS

File Management

maintains directory structures

provides file naming conventions

controls access

Security Management

makes provision for recovery when data is lost

provides usernames and passwords/encryption/user accounts

prevents unauthorized access

ensures the privacy of data

Hardware Management (Input/Output/Peripherals)

installation of appropriate driver software

controls access to data being sent to/from hardware/peripherals

controls access to hardware/peripherals

manages communication between devices/hardware and software

Process Management

scheduling of processes/multi-tasking/multi-programming

resolution of conflicts when two or more processes require the same resource

An additional program that helps to maintain or configure the system

Disk Formatter

Makes existing data inaccessible



Program Libraries

Benefits of Library Files

Dynamic Link Library (DLL) files

Partitions the disk into logical drives

Sets up the (specified) file system

Prepares the disk for initial use

May check for errors on the disk

Virus Checker

Scans files stored on computer system for malicious code

Scans files when they enter the system or downloaded

Sets up schedule for virus-checking

Isolates or deletes viruses

Regularly updates virus definitions

Defragmentation Software

Re-organizes the disk contents

Moves split files so they are contiguous

Creates a larger area of (contiguous) free space

Disk Contents Analysis Software: Provides a detailed visualization or report of the disk usage by

various files and folders. This helps in identifying large, duplicate, or unnecessary files and efficiently

managing disk storage space

Disk Repair Software

Check for any errors on the disk

Resolves any errors on the disk

Retrieves files/data from damaged disk

Marks bad sectors on the disk

File Compression

Reduces file size by removing redundant data in files

Causes improvements in the computer's performance by reducing the data that needs to be

stored

Back-up Software

Creates copy of contents of a disk, can be set up for automatically backup

Allows user decide what is backed up

Allows user set up off site backup

May encrypt backup files

Restores data if necessary

Pre-written code that can be linked to software under development without any amendments

Can perform common or complex tasks

Provides ready-built routine that can be imported into a program

the code is already written, so the programmer is not starting over again, which saves time

the code will have been used by many people, so it should be already thoroughly tested and

relatively error-free

The programmer can use mathematical/graphics functions that he may not know how to code

If there is an improvement in the library routine, the program updates automatically

A collection of self-contained programs that are already compiled



5.2 Language Translators

Compilers, Interpreters, and Assemblers

Aspect Assembler Software Compiler Interpreter

Purpose Translates assembly language
programs into machine code

Translates high-level language
programs into machine code
or intermediate code

Translates and executes high-level
language programs line by line or
statement by statement

Translation
Process

Converts mnemonic opcode
and operands into their
numerical equivalents

Analyzes the entire program
and converts it into a
standalone executable or
intermediate form

Reads, translates, and executes
each line of code in sequence
without producing a separate
executable

Output Machine code specific to a
processor architecture

Machine code or byte code
that can be executed by the
machine or a virtual machine

No separate output file; the code
is executed directly from the
source

Speed of
Execution

Generates machine code that
can be directly executed by
the CPU, making it very fast

Slow translation phase, but
results in fast execution since
the entire program is
translated before execution

Slower execution compared to
compiled programs, as translation
occurs at runtime

Efficiency Highly efficient as it produces
code that runs directly on the
CPU

Efficient in terms of execution
speed after the program has
been compiled

Less efficient as each instruction
must be translated every time it is
executed

Error
Detection

Errors are detected during the
assembly time, but debugging
can be more difficult due to
low-level code

Syntax and some semantic
errors are detected at compile
time; runtime errors are
detected during execution

Errors are detected at runtime, line
by line, which can be easier for
debugging

Use Cases Used for programs that
require direct hardware
manipulation, performance
optimization, and small-size

Used for large applications
where performance is critical
and when distribution of
executable is required

Used for scripting, rapid
prototyping, and in situations
where the environment is
controlled or the program will not
be widely distributed

Benefits of interpreters

Linked to the main program during execution

DLL code is separate from the executable file

DLL files are only loaded into memory when required at run time

A DLL file can be made available to several applications at the same time

Benefits

1. The executable file becomes smaller as it does not contain all the library routines, since DLL files

are only loaded into memory when needed

2. Changes/improvements/error detection to the DLL file code are done independently of the main

program

So there is no need to recompile the main program

All programs using it will benefit

3. A single DLL file can be made available to several application programs

Saving the space in memory

Drawbacks

1. Appropriate linking software must be available at run time to link/include/import the DLL files

2. The DLL file must be present in the system, otherwise errors (unable to find X.dll files)

3. Unexpected changes to the DL file could mean the program stops working as expected

Errors can be corrected as they occur (since error occurs line by line) → Easier to debug

Can run a partially complete program when developing

The effect of any change made to the code can be seen immediately



Benefits of compilers

Partial Compilation of Java

Integrated Development Environment (IDE)

Features of IDE

Produces an executable file

Users do not have access to the source code

It will (probably) be faster to run the executable

Code does not have to be compiled each time it is run

Does not need the compiler to be present at run-time (so it is environment-independent)

Uses 2 step translation process

Java will be partially compiled and then partially interpreted

Java code is first translated to byte-code by Java compiler

Byte-code is finally interpreted by the Java Virtual Machine to produce machine code

a single software program for program editing, translation, and testing

for Coding: context-sensitive prompts, auto-complete, auto-indentation

for Initial Error Detection: dynamic syntax checks, highlights any undeclared variables, highlights any

unassigned variables

for Presentation: pretty-print (color-coding of keywords/comments, indentation), expand and

collapse code blocks

for Debugging: single stepping, breakpoints, report window to watch the changing value of variables


