
4. Processor Fundamentals

4.1 Central Processing Unit (CPU) Architecture

Von Neumann Architecture: computer architecture which introduced the concept of the stored program →
uses a single storage structure to hold both data and instructions

Early computers are fed data while running.

Basic features:
1. A central processing unit (a CPU or a process)
2. A process able to access memory directly
3. Computer memories that could store programs as well as data
4. Stored programs made up of instructions that could be executed in a sequential order

Main Components

Arithmetic Logic Unit (ALU): Performs all the mathematical and logical operations required when
processing data and instructions
Control Unit (CU): Directs the operation of the processor and manages the flow of data within the CPU and
between the CPU and other components

1. Instruction Fetching: Retrieves instructions from memory
2. Instruction Decoding: Deciphers what operation is to be performed
3. Execution: Directs the ALU, registers, and other components to execute the instruction

4. Control of Data Flow: Manages the flow of data within the CPU and to/from memory
5. Timing and Control: Ensures that all parts of the CPU and peripherals are synchronized and operating

correctly

System Clock: Provides regular, constant time signals on the control bus that help synchronize all the
computer's operations
Immediate Access Store (IAS): Provides fast, direct access storage for data and instructions that are
actively being used

The CPU takes data and programs held in the backing store and puts them into the IAS temporarily
because the IAS's read/write is faster than that of the backing store
Another name for primary memory (e.g., RAM)

Registers

Temporary component in the processor which can be general or specific in its use that holds data or
instructions as part of the fetch-execute cycle.

General purpose: versatile and can be used for a variety of functions
they can be used for different purposes at different times

Special purpose: used to perform specific, pre-defined functions
e.g., program counter

Special Purpose Registers

Program Counter (PC): Stores the memory address of the next instruction to be executed by the CPU

Current Instruction Register (CIR): Stores the current instruction being decoded and executed by the CPU
Index Register (IX): Stores an offset value, which is added to the base address of an array or memory
location to calculate the effective address of the data being accessed or manipulated

Memory Address Register (MAR): Stores the address in memory from where data is to be fetched or to
where data is to be stored
Memory Data Register (MDR): Temporarily stores the data being read from or written to memory
Status Register (SR): Holds flags that indicate the current state of the processor and the outcomes of
various operations, guiding subsequent instructions
Accumulator (ACC): Stores the result of any interim calculations of the ALU

Buses

Used in computers as a parallel transmission component; each wire in the bus transmits one bit of data at a
time
Data Bus: Transmission of data and instructions, bidirectional
Address Bus: Transmission of addresses, unidirectional
Control Bus: Transmission of control signals, bidirectional

CPU Performance

Bus Width: the larger the bus width, the more data can be transferred at the same time throughout the CPU
(e.g., 64-bit v.s. 32-bit)
Number of Cores: the more cores a CPU has, the more FDE cycles it can carry out at once (e.g., dual-core
and quad-core)

doubling the core ≠ doubling the performance, as the CPU needs to communicate with both cores,
causing performance degradation

Clock Speed: the faster the clock speed, the more number of cycles the CPU can perform per second
overclocking might happen: the clock speed is higher than the computer was designed for → leading
async operations (as a new instruction is sent when the prior one is not completed) & overheating

Cache Memory: the larger the cache memory, the more data can be stored in the cache to be accessed by
the CPU directly

cache: a small, fast memory built into the CPU that stores the most frequently accessed data and
instructions, reducing the time it takes to fetch data from the slower main memory
A large cache size might decrease performance as it takes a long time to search over the data inside
the large cache

Computer Port

Input and output devices are connected to a computer via ports
USB: serialized data transfer; data connection controlled by a host (e.g., a computer) that communicates with
connected devices

the host recognizes the device automatically when it is connected and establishes a communication
channel

HDMI: sends audio and video data signals together, using a single cable for high-definition transmission
when connected, HDMI encodes digital signals and source and decode them at the display

VGA: an older, analog method for transmitting video signals, primarily used for simple display connections

F-E Cycle

Be familiar with the memory register notation, e.g., MAR ← PC

1. Fetch Stage

1. MAR ← [PC]: The content of the PC is transferred to the MAR; this is the address of the next instruction to
be fetched

2. PC ← [PC] + 1: The PC is incremented by 1 to point to the next instruction
3. MDR ← [[MAR]]: The address that is stored by the MAR is fetched from the memory and placed in MDR
4. CIR ← [MDR]: The instruction in the MDR is transferred to the CIR

2. Decode Stage

The CU uses an instruction set to decode the instructions into machine codes for the CPU to execute

3. Execute Stage

The CU directs the components to execute the instruction being decoded. Different processes are taken for
different types of commands

Interrupts

a signal sent from a device or from software to the processor, causing the processor to temporarily stop what
it is doing and service the interrupt
Interrupt Service Routine (ISR): low-level functions designed to handle interrupts; ISRs are specific to each
interrupt an contain the code to handle the interrupt

Causes of interrupts

1. A timing signal
2. A hardware fault (e.g., a paper jam in the computer)
3. A software error (e.g., division by zero)
4. User interaction (e.g., the user presses a key to stop the current process)

Applications of interrupts

1. Multitasking
2. Response to real-time events, like user input or sensor signals
3. System control and coordination, managing various hardware and software functions simultaneously

Handling of interrupts

1. Interrupt Acknowledgement: the CPU recognizes the interrupt and determines the interrupt priority to see
whether to serve the interrupt

2. Save State: the CPU saves its current state (like register contents) to return later
3. Execute ISR: the CPU executes the appropriate ISR
4. Restore State and Resume: after ISR execution, the CPU restores its previous state and resumes its

interrupted task

4.2 Assembly Language

Assembly Language: A low-level programming language that uses mnemonic to represent machine-level
instructions. It is more readable than machine code and specific to a computer's architecture.
Machine Code: Binary codes that are directly executed by a CPU

Stages of Assembly

1. First Pass: Analysis
Symbol Table Creation: Identifies and stores all labels (symbols) used in the program to the symbol
table, like variable names and jump labels, along with their addresses
Syntax Checking: Checks for syntax errors in the code, ensuring that all the instructions and operands
are valid

2. Second Pass: Synthesis
Opcode Resolution: Converts mnemonics into their corresponding opcodes (operation codes) – the
machine code instructions.
Address Resolution: Resolves addresses for labels and variables. The addresses from the symbol
table created in the first pass are used to replace the labels in the instructions.

Application of Two-Pass Assembler Process

First Pass:

Symbol Table:
START : Address of the first instruction

e.g., START 100

Syntax Checking:
- All instructions are valid
Second Pass:
Opcode Resolution:

MOV A, 5 is converted to its binary equivalent opcode
ADD B is converted into its corresponding machine code

Address Resolution:
JMP START is resolved with the address of START from the symbol table

Grouping of Assembly Codes

In assembly language, instructions are typically grouped based on their functionality → helps in
understanding and organizing the code
Data Movement: LDM, LDD, LDI, LDX, LDR, MOV, STO
Input and Output of Data: `IN, OUT
Arithmetic Operations: ADD, SUB, INC, DEC
Conditional and Unconditional Instructions: JMP, JPE, JPN
Compare Instructions: CMP, CMI

Addressing Modes

Immediate: the value of the operand only is used
LDD #200 stores the value of 200 in the ACC

Direct: the content of the memory location in the operand is used
LDD 200 stores the content in address 200 in the ACC

START: MOV A, 5 // Move 5 into register A
 ADD B // Add the contents of register B to A
 JMP START // Jump to the start

Indirect: the content of the content of the memory location in the operand is used
LDI 200 stores the content in the address denoted by the content in address 200

Indexed: the content of the memory location found by adding the content of the index register (IX)
LDX 200 stores the content in the address 200 + value of IX

Relative: the memory address used is the current memory address added to the operand
JMR #5 would jump to the instruction 5 locations after the current one

4.3 Bit Manipulation

Binary Shifts

Logical Shift: bits shifted out of the register are replaced with zeros
Arithmetic Shift: the sign of the number is preserved
Cyclic Shift: no bits are lost during a shift; bits shifted out of one end of the register are introduced at the
other end of the register
Shifts are always performed on the ACC

Bit Manipulation in Monitoring & Control

each bit in a register/memory location can be used as a flag and would need to be tested, set, or cleared
separately
Operations

AND <mask> is used to **check if the bit has been set
OR <mask> is used to set the bit
XOR <mask> is used to clear the bit
The results of logical bit manipulation are always stored in the ACC

Example

Code to test sensor 3
B denotes a binary number, # denotes a denary number, & denotes a hexadecimal number

LDD sensors // Load content of sensors into ACC
AND #B100 // Select bit 3 only
CMP #B100 // Check if bit 3 is set
JPN process // Jump to process routine if bit not set
LDD sensors // Load content of sensors into ACC
XOR #B100 // Clear bit 3 as sensor 3 has been processed

